Схемотехника аналоговых электронных устройств

 

 

 

 

 

 

 

6. ОПЕРАЦИОННЫЕ УСИЛИТЕЛИ

 

         6.1. Общие сведения


         Операционным усилителем (ОУ) принято называть интегральный усилитель постоянного тока с дифференциальным входом и двухтактным выходом, предназначенный для работы с цепями обратных связей. Название усилителя обусловлено первоначальной областью его применения - выполнением различных операций над аналоговыми сигналами  (сложение, вычитание, интегрирование и др.). В настоящее время ОУ выполняют роль многофункциональных узлов при реализации разнообразных устройств электроники различного назначения. Они применяются для усиления, ограничения, перемножения, частотной фильтрации, генерации, стабилизации и т.д. сигналов в устройствах непрерывного и импульсного действия.

         Необходимо отметить, что современные монолитные ОУ по своим размерам и цене незначительно отличаются от отдельных дискретных элементов, например, транзисторов. Поэтому выполнение различных устройств на ОУ часто осуществляется значительно проще, чем на дискретных элементах или на усилительных ИМС.

         Идеальный ОУ имеет бесконечно большой коэффициент усиления по напряжению (), бесконечно большое входное сопротивление, бесконечно малое выходное сопротивление, бесконечно большой КОСС и бесконечно широкую полосу рабочих частот. Естественно, что на практике ни одно из этих свойств не может быть осуществлено полностью, однако к ним можно приблизиться в достаточной для многих областей мере.

         На рисунке 6.1 приведено два варианта условных обозначений ОУ - упрощенный (а) и с дополнительными выводами для подключения цепей питания и цепей частотной коррекции (б).



         На основе требований к характеристикам идеального ОУ можно синтезировать его внутреннюю структуру, представленную на рисунке 6.2.



 Упрощенная электрическая схема простого ОУ, реализующая структурную схему рисунка 6.2, показана на рисунке 6.3.



         Данная схема содержит входной ДУ ( и ) с токовым зеркалом ( и ), промежуточные каскады с ОК () и с ОЭ (), и выходной токовый бустер на транзисторах  и . ОУ может содержать цепи частотной коррекции (), цепи питания и термостабилизации (,  и др.), ИСТ и т.д. Двухполярное питание позволяет осуществить гальваническую связь между каскадами ОУ и нулевые потенциалы на его входах и выходе в отсутствии сигнала. С целью получения высокого входного сопротивления входной ДУ может быть выполнен на ПТ. Следует отметить большое разнообразие схемных решений ОУ, однако основные принципы их построения достаточно полно иллюстрирует рисунок 6.3.


         6.2. Основные параметры и характеристики ОУ


         Основным параметром ОУ коэффициент усиления по напряжению без обратной связи , называемый также полным коэффициентом усиления по напряжению. В области НЧ и СЧ он иногда обозначается  и может достигать нескольких десятков и сотен тысяч.

         Важными параметрами ОУ являются его точностные параметры, определяемые входным дифференциальным каскадом. Поскольку точностные параметры ДУ были рассмотрены в подразделе 5.5, то здесь ограничимся их перечислением:

         ¨ напряжение смещения нуля ;

         ¨ температурная чувствительность напряжения смещения нуля                              ;

         ¨ ток смещения ;

         ¨ средний входной ток .

         Входные и выходные цепи ОУ представляются входным  и выходным  сопротивлениями, приводимыми для ОУ без цепей ООС. Для выходной цепи даются также такие параметры, как максимальный выходной ток  и минимальное сопротивление нагрузки , а иногда и максимальная емкость нагрузки. Входная цепь ОУ может включать емкость между входами и общей шиной. Упрощенные эквивалентные схемы входной и выходной цепи ОУ представлены на рисунке 6.4.


         Среди параметров ОУ следует отметить КОСС и коэффициент ослабления влияния нестабильности источника питания КОВНП=. Оба этих параметра в современных ОУ имеют свои значения в пределах (60…120)дБ.

         К энергетическим параметрам ОУ относятся напряжение источников питания ±Е, ток потребления  (покоя)  и потребляемая мощность. Как правило, составляет десятые доли - десятки миллиампер, а потребляемая мощность, однозначно определяемая , единицы - десятки милливатт.

         К максимально допустимым параметрам ОУ относятся:

         ¨ максимально возможное (неискаженное) выходное напряжение сигнала (обычно чуть меньше Е);

         ¨ максимально допустимая мощность рассеивания;

         ¨ рабочий диапазон температур;

         ¨ максимальное напряжение питания;

         ¨ максимальное входное дифференциальное напряжение и др.

         К частотным параметрам относится абсолютная граничная частота или частота единичного усиления  (), т.е. частота, на которой . Иногда используется понятие скорости нарастания и времени установления выходного напряжения, определяемые по реакции ОУ на воздействие скачка напряжения на его входе. Для некоторых ОУ приводятся также дополнительные параметры, отражающие специфическую область их применения.

         Амплитудные (передаточные) характеристики ОУ представлены на рисунке 6.5 в виде двух зависимостей  для инвертирующего и неинвертирующего входов.

Когда на обоих входах ОУ , то на выходе будет присутствовать напряжение ошибки , определяемое точностными параметрами ОУ (на рисунке 6.5  не показано ввиду его малости).


         Частотные свойства ОУ представляются его АЧХ, выполненной в логарифмическом масштабе, . Такая АЧХ называется логарифмической (ЛАЧХ), ее типовой вид приведен на рисунке 6.6 (для ОУ К140УД10).

         Частотную зависимость  можно представить в виде:

.

Здесь  постоянная времени ОУ, которая при  определяет частоту сопряжения (среза) ОУ (см. рисунок 6.6); .

         Заменив в выражении для    на , получим запись ЛАЧХ:

.

На НЧ и СЧ , т.е. ЛАЧХ представляет собой прямую, параллельную оси частот. С некоторым приближением можем считать, что в области ВЧ спад  происходит со скоростью 20дБ на декаду(6дБ на октаву). Тогда при w>> можно упростить выражение для ЛАЧХ:

.

         Таким образом, ЛАЧХ в области ВЧ представляется прямой линией с наклоном к оси частот 20дБ/дек. Точка пересечения рассмотренных прямых, представляющих ЛАЧХ, соответствует частоте сопряжения  (). Разница между реальной ЛАЧХ и идеальной на частоте составляет порядка 3дБ (см. рисунок 6.6), однако для удобства анализа с этим мирятся, и такие графики принято называть диаграммами Боде.

         Следует заметить, что скорость спада ЛАЧХ 20дБ/дек характерна для скорректированных ОУ с внешней или внутренней коррекцией, основные принципы которой будут рассмотрены ниже.

         Для скорректированного ОУ можно рассчитать  на любой частоте f как , а .

         На рисунке 6.6 представлена также логарифмическая ФЧХ (ЛФЧХ), представляющая собой зависимость фазового сдвига j выходного сигнала относительно входного от частоты. Реальная ЛФЧХ отличается от представленной не более чем на 6°. Отметим, что и для реального ОУ j=45° на частоте , а на частоте  - 90°. Таким образом, собственный фазовый сдвиг рабочего сигнала в скорректированном ОУ в области ВЧ может достигнуть 90°.

         Рассмотренные выше параметры и характеристики ОУ описывают его при отсутствии цепей ООС. Однако, как отмечалось, ОУ практически всегда используется с цепями ООС, которые существенно влияют на все его показатели.




         6.3. Инвертирующий усилитель


         Наиболее часто ОУ используется в инвертирующих и неинвертирующих усилителях. Упрощенная принципиальная схема инвертирующего усилителя на ОУ приведена на рисунке 6.7.



         Резистор  представляет собой внутреннее сопротивление источника сигнала , посредством  ОУ охвачен ||ООСН.

         При идеальном ОУ разность напряжений на входных зажимах стремиться к нулю, а поскольку неинвертирующий вход соединен с общей шиной через резистор , то потенциал в точке а тоже должен быть нулевым ("виртуальный нуль", "кажущаяся земля"). В результате можем записать: , т.е. . Отсюда получаем:

,

т.е. при идеальном ОУ  определяется отношением величин внешних резисторов и не зависит от самого ОУ.

         Для реального ОУ необходимо учитывать его входной ток , т.е.  или , где  - напряжение  сигнала на инвертирующем входе ОУ, т.е. в точке а. Тогда для реального ОУ получаем:

.

         Нетрудно показать, что при глубине ООС более 10, т.е. , погрешность расчета  для случая идеального ОУ не превышает 10%, что вполне достаточно для большинства практических случаев.

         Номиналы резисторов в устройствах на ОУ не должны превышать единиц мегом, в противном случае возможна нестабильная работа усилителя из-за токов утечки, входных токов ОУ и т.п. Если в результате расчета величина  превысит предельное рекомендуемое значение, то целесообразно использовать Т-образную цепочку ООС, которая при умеренных номиналах резисторов позволяет выполнить функцию эквивалента высокоомного  (рисунок 6.7б) . В этом случае можно записать:

.

На практике часто полагают, что , а величина  обычно задана, поэтому  определяется достаточно просто.

         Входное сопротивление инвертирующего усилителя на ОУ имеет относительно небольшое значение, определяемое параллельной ООС:

,

т.е. при больших  входное сопротивление определяется величиной .

         Выходное сопротивление инвертирующего усилителя в реальном ОУ отлично от нуля и определяется как величиной , так и глубиной ООС F. При F>10 можно записать:

.

         С помощью ЛАЧХ ОУ можно представить частотный диапазон инвертирующего усилителя (см. рисунок 6.6), причем

.

В пределе можно получить , т.е. получить инвертирующий повторитель. В этом случае получаем минимальное выходное сопротивление усилителя на ОУ:

.

         В усилителе на реальном ОУ на выходе усилителя при  всегда будет присутствовать напряжение ошибки , порождаемое  и . С целью снижения  стремятся выровнять эквиваленты резисторов, подключенных к входам ОУ, т.е. взять  (см. рисунок 6.7а). При выполнении этого условия для  можно записать:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать