Расчет намагничивающего устройства для магнитопорошкового метода неразрушающего контроля

Интересное видоизменение этого типа представляют поляризованные электромагниты (предложены Юзом в 1855 г.), в которых сердечники поддерживаются все время сильно намагниченными при помощи сильных стальных магнитов.

Такие электромагниты представляют две особенности:

а) Сила, с которой они притягивают якорь, зависит от направления тока в обмотке электромагнита; действительно, если магниты сердечника всегда обладают определенной индукцией B, то пропускание тока по обмотке в том направлении, которое усиливает эту индукцию, увеличит силу притяжения якоря; обратное направление тока ослабит притяжение. На этом свойстве поляризованных электромагнитов основано применение их в тех электромагнитных приборах, в которых направление движения якоря должно меняться с изменением направления тока, проходящего по обмотке электромагнита (электрические звонки для переменного тока).

б) Незначительная сила тока в обмотке электромагнита вызывает большее изменение притягательной силы, чем в обыкновенном электромагните Действительно, предположим, что сила тока в обмотке такова, что она может возбудить поле, H = 2,3; тогда в обыкновенном электромагните с сердечником из литой стали возникнет индукция 4000 и пропорциональная квадрату её или 16 сила притяжения. Если же сердечник был уже предварительно намагничен до В = 6000, то усиление его намагничевания при помощи поля H = 2,3 вызовет приблизительно индукцию около 10000; при пропускании тока сила притяжения, следовательно, увеличится от 6 2 = 36 до 10 2 = 100, т.е. на 100–36 = 64, что в 4 раза больше, чем в неполяризованном электромагните. В виду этого свойства поляризованные электромагниты применяются во всех тех случаях, когда ничтожный по силе ток должен вызвать заметное изменение в силе притяжения якоря (реле, телефоны).

Магниты для отделения сильно магнитных материалов от немагнитных веществ, к которым первые примешаны. Электромагниты этого рода находят теперь большое применение в обогащении железных руд; измельченная железная руда бежит струёй мимо электромагнита, который втягивает в свое поле все сильно магнитные части руды, содержащие железо, и пропускает мимо несодержащие железо минеральные составные части руды. Сюда же можно отнести электромагниты, применяемые в медицине для извлечения из различных частей тела (в особенности, глаз) врезавшихся в них железных частичек.

Электромагниты с подвижным сердечником, в которых при пропускании тока через обмотку соленоида подвижной железный сердечник втягивается в соленоид. Подобные электромагниты применяются во многих измерительных и регулирующих инструментах и в регуляторах дуговых ламп.

Придавая сердечнику соответственную форму, стараются достичь того, чтобы сила втяжения сердечника на значительном протяжении его пути была по возможности одинакова.


2.3 Устройство электромагнита

Вместе с тем при всем разнообразии встречающихся на практике электромагнитов они состоят из основных частей одинакового назначения. К ним относятся катушка с расположенной на ней намагничивающей обмоткой (может быть несколько катушек и несколько обмоток), неподвижная часть магнитопровода, выполняемого из ферромагнитного материала (ярмо и сердечник) и подвижная часть магнитопровода (якорь). В некоторых случаях неподвижная часть магнитопровода состоит из нескольких деталей (основания, корпуса, фланцев и т.д.).

Якорь отделяется от остальных частей магнитопровода воздушными промежутками и представляет собой часть электромагнита, которая, воспринимая электромагнитное усилие, передает его соответствующим деталям приводимого в действие механизма.

Количество и форма воздушных промежутков, отделяющих подвижную часть магнитопровода от неподвижной, зависят от конструкции электромагнита. Воздушные промежутки, в которых возникает полезная сила, называются рабочими; воздушные промежутки, в которых не возникает усилия в направлении возможного перемещения якоря, являются паразитными.

Поверхности подвижной или неподвижной части магнитопровода, ограничивающие рабочий воздушный промежуток, называют полюсами.

В зависимости от расположения якоря относительно остальных частей электромагнита различают электромагниты с внешним притягивающимся якорем, электромагниты со втягивающимся якорем и электромагниты с внешним поперечно движущимся якорем.

Характерной особенностью электромагнитов с внешним притягивающимся якорем является внешнее расположение якоря относительно обмотки. На него действует главным образом рабочий поток, проходящий от якоря к торцу шляпки сердечника.

Характер перемещения якоря может быть вращательным (например, клапанный электромагнит) или поступательным. Потоки рассеяния (замыкающиеся помимо рабочего зазора) у таких электромагнитов практически не создают тягового усилия, и поэтому их стремятся уменьшить. Электромагниты этой группы способны развивать достаточно большое усилие, но обычно применяются при сравнительно небольших рабочих ходах якоря.

Особенностью электромагнитов со втягивающимся якорем являются частичное расположение якоря в своем начальном положении внутри катушки и дальнейшее перемещение его в катушку в процессе работы.

Потоки рассеяния у таких электромагнитов, особенно при больших воздушных зазорах, создают определенное тяговое усилие, в результате чего они являются полезными, особенно при сравнительно больших ходах якоря. Такие электромагниты могут выполняться со стопом или без него, причем форма поверхностей, образующих рабочий зазор, может быть различной в зависимости от того, какую тяговую характеристику нужно получить.

Наибольшее распространение получили электромагниты с плоскими и усеченно коническими полюсами, а также электромагниты без стопа. В качестве направляющей для якоря чаще всего применяется трубка из немагнитного материала, создающая паразитный зазор между якорем и верхней, неподвижной, частью магнитопровода.

Электромагниты со втягивающимся якорем могут развивать усилия и иметь ход якоря, изменяющиеся в очень большом диапазоне, что обусловливает их широкое распространение.

В электромагнитах с внешним поперечно движущимся якорем якорь перемещается поперек магнитных силовых линий, поворачиваясь на некоторый ограниченный угол. Такие электромагниты обычно развивают сравнительно небольшие усилия, но они позволяют путем соответствующего согласования форм полюсов и якоря получать изменения тяговой характеристики и высокий коэффициент возврата.

В каждой из трех перечисленных групп электромагнитов в свою очередь имеется ряд конструктивных разновидностей, связанных как с характером протекающего по обмотке тока, так и с необходимостью обеспечения заданных характеристик и параметров электромагнитов.


2.4 Классификация электромагнитов

Электромагниты весьма разнообразны по конструктивным выполнениям, которые различаются по своим характеристикам и параметрам, поэтому классификация облегчает изучение процессов, происходящих при их работе.

В зависимости от способа создания магнитного потока и характера действующей намагничивающей силы электромагниты подразделяются на три группы: электромагниты постоянного тока нейтральные, электромагниты постоянного тока поляризованные и электромагниты переменного тока.

В нейтральных электромагнитах постоянного тока рабочий магнитный поток создается с помощью обмотки постоянного тока. Действие электромагнита зависит только от величины этого потока и не зависит от его направления, а следовательно, от направления тока в обмотке электромагнита. При отсутствии тока магнитный поток и сила притяжения, действующая на якорь, практически равны нулю.

Поляризованные электромагниты постоянного тока характеризуются наличием двух независимых магнитных потоков: (поляризующего и рабочего. Поляризующий магнитный поток в большинстве случаев создается с помощью постоянных магнитов.

Иногда для этой цели используют электромагниты. Рабочий поток возникает под действием намагничивающей силы рабочей или управляющей обмотки. Если ток в них отсутствует, на якорь действует сила притяжения, создаваемая поляризующим магнитным потоком. Действие поляризованного электромагнита зависит как от величины, так и от направления рабочего потока, т.е. от направления тока в рабочей обмотке.

В электромагнитах переменного тока питание обмотки осуществляется от источника переменного тока. Магнитный поток, создаваемый обмоткой, по которой проходит переменный ток, периодически изменяется по величине и направлению (переменный магнитный поток), в результате чего сила электромагнитного притяжения пульсирует от нуля до максимума с удвоенной частотой по отношению к частоте питающего тока.

Однако для тяговых электромагнитов снижение электромагнитной силы ниже определенного уровня недопустимо, так как это приводит к вибрации якоря, а в отдельных случаях к прямому нарушению нормальной работы. Поэтому в тяговых электромагнитах, работающих при переменном магнитном потоке, приходится прибегать к мерам для уменьшения глубины пульсации силы (например, применять экранирующий виток, охватывающий часть полюса электромагнита).

Кроме перечисленных разновидностей, в настоящее время большое распространение получили электромагниты с выпрямлением тока, которые по питанию могут быть отнесены к электромагнитам переменного тока, а по своим характеристикам приближаются к электромагнитам постоянного тока. Поскольку все же имеются некоторые специфические особенности их работы.

В зависимости от способа включения обмотки различают электромагниты с последовательными и параллельными обмотками.

Обмотки последовательного включения, работающие при заданном токе, выполняются с малым числом витков большого сечения. Ток, проходящий по такой обмотке, практически не зависит от ее параметров, а определяется характеристиками потребителей, включенных последовательно с обмоткой.

Обмотки параллельного включения, работающие при заданном напряжении, имеют, как правило, весьма большое число витков и выполняются из провода малого сечения.

По характеру работы обмотки электромагниты разделяются на работающие в длительном, прерывистом и кратковременном режимах.

По скорости действия электромагниты могут быть с нормальной скоростью действия, быстродействующие и замедленно действующие. Это разделение является несколько условным и свидетельствует главным образом о том, приняты ли специальные меры для получения необходимой скорости действия.

Все перечисленные выше признаки накладывают свой отпечаток на особенности конструктивных выполнений электромагнитов.


2.5 Применение электромагнитов

Электромагниты получили настолько широкое распространение, что трудно назвать область техники, где бы они не применялись в том или ином виде. Они содержатся во многих бытовых приборах – электробритвах, магнитофонах, телевизорах и т.п. Устройства техники связи – телефония, телеграфия и радио немыслимы без их применения.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать