Расчет разветвленной электрической цепи постоянного тока

Расчет разветвленной электрической цепи постоянного тока



                                                                                

 

 

Министерство науки и образования Республики Казахстан

 

Технико-экономическая академия кино и телевидения

 

 

                                                   Кафедра инженерных дисциплин

   





КУРСОВАЯ РАБОТА

 

по предмету «Теория электрических цепей»

 


              на тему «Расчет разветвленной электрической цепи

постоянного тока»


 

 

 

         Специальность:            380440 “Программное и аппаратное обеспеспечение вычисли-

                                              тельной техники и сетей”

 

         Студент:                                                                              Бучинский Ю.А.      

         

          Группа:                                                 ПАОС-03-2у с

               

          Руководитель:                                                                   Шабанова А.Р.    

             

          Защищена с оценкой                                                          

 

         



Алматы

2003

Содержание.


Введение.                                                                                                                        3


1 Теоритическая часть.                                                                                                  4


   1.1. Электрический ток. Сила тока. Условия существования тока в цепи.           4


   1.2. Электродвижущая сила (ЭДС). Напряжение.                                                   6


   1.3. Закон Ома для участка цепи. Омическое сопротивление проводника.

          Удельное сопротивление.                                                                                    7


   1.4. Зависимость удельного сопротивления от температуры.                                8

          Сверхпроводимость.


   1.5. Последовательное и параллельное соединение проводников.                       10


   1.6. Закон Ома для полной цепи.                                                                              13


   1.7. Источники тока, их соединения.                                                                       15


   1.8. Измерение тока и разности потенциалов цепи.                                               18


   1.9. Работа и мощность электрического тока. Закон Джоуля-Ленца.                  20


   1.10. Электрический ток в металлах.                                                                       22


   1.11. Электрический ток в электролитах. Закон электролиза (закон Фарадея). 23


2 Расчётная часть.                                                                                                         27


   2.1Задание на курсовую работу                                                                               27


   2.2.Составление уравнений по двум законам Кирхгофа.                                      28


   2.3.Определение всех токов и напряжений методом контурных токов.              29


   2.4.Метод узловых потенциалов.                                                                             31


   2.5.Энергетический баланс мощностей.                                                                  33


   2.6 Построение потенциальных диаграмм для двух замкнутых контуров.         34


Заключение.                                                                                                                  36


Список литературы.                                                                                                     37

Введение.


     В процессе выполнения курсовой работы мы попытаемся про анализировать схему разветвленной электрической цепи постоянного тока. В полном объёме изучим её работу. А также будем рассматривать, различные методы определения токов, напряжений и узловых потенциалов. Проверим на практике различные законы Ома, законы Кирхгофа, баланса мощностей. Наглядно графическим методом покажем зависимость напряжения от сопротивления путем построения потенциальных диаграмм, для замкнутых контуров.






































1 Теоритическая часть.

   1.1. Электрический ток. Сила тока. Условия существования тока в цепи.

Электрическим током называется упорядоченное (направ­ленное) движение заряженных частиц.

Электрический ток возникает при упорядоченном движении свободных электронов, а металлах и полупроводниках или поло­жительных и отрицательных ионов в электролитах. В газах упорядоченно движутся ионы и электроны. За направление тока при­нимают то направление, в котором упорядоченно движутся положительно заряженные частицы. В металлах направление тока противоположно направлению движения свободных элек­тронов (отрицательно заряженных частиц).

О наличии электрического тока в проводнике можно судить по явлениям, сопровождающим ток, т.е. по его действиям:

1) тепловому — проводник с током нагревается. Например, работа электронагревательных приборов основана на этом действии тока. Но есть вещества, у которых данный эффект отсутству­ет — сверхпроводники;

2) химическому — изменение химического состава проводника и разделение его на составные части. Это действие наблюдается в электролитах и газах. Например, из раствора медного купо­роса можно выделить чистую медь. Само явление разложения вещества током называется электролизом;

3) магнитному — вокруг любого проводника с током существует магнитное поле, действующее с некоторой силой на соседние токи или намагниченные тела. Например, вблизи проводника с током магнитная стрелка ориентируется определенным образом.

Магнитное действие тока проявляется всюду, независимо от свойств проводника, и поэтому оно является основным действием электрического тока. Количественной характеристикой электри­ческого тока является сила тока I, которая определяется количеством электричества q, протекающего через поперечное сечение проводника за 1 с.

I=q/D t

Сила тока равна отношению заряда Dq, переносимого через поперечное сечение проводника за интервал времени Dt, к этому интервалу времени. Электрический ток, сила и направление ко­торого не меняется с течением времени, называется постоянным током. В СИ заряды (количество электричества) измеряются в кулонах, а время в секундах, единицей силы тока является ампер (А).

Название единицы силы тока дано в честь французского фи­зика Андре Ампера (1775-1836). Единица тока определяется на основе магнитного взаимодействия токов.

Распределение тока по сечению проводника характеризуется вектором плотности тока i, модуль которого равен:

i=I/s

     Плотность тока определяет ток, приходящийся на единицу площади поперечного сечения проводника. Направление вектора плотности тока совпадает с направлением тока.

Сила тока может быть как положительной, так и отрицатель­ной. Если направление тока совпадает с положительным направ­лением вдоль проводника, то I > 0. Если ток направлен в противо­положную сторону, то I< 0.

Сила тока в металлическом проводнике зависит от заряда, переносимого каждой частицей, концентрации частиц, скорости их направленного движения и площади поперечного сечения про­водника:

I=q0*n* v*s

Рассмотрим участок проводни­ка длиной ДL и площадью попере­чного сечения S. Положительное направление в проводнике cсовпада­ет с направлением движения частиц и средней скоростью частиц v, за­ключенных в объеме, ограниченном сечениями 1 и 2.

В данном объеме

V=Dl*S

Содержится общее число частиц


      Рис.1

 N=n*v=n*Dl*S,

где п =N/V — концентрация частиц (число частиц в единице

объема). Общий заряд всех частиц:

q=q0*V=q0*n*Dl*S где q0 — заряд каждой частицы. За промежуток времени

Dt=Dl/v

все частицы данного объема пройдут через сечение 2. Сила тока в

проводнике:

I=q/Dt=q0*n*Dl*S/Dt=q0*n*Dl*S/Dl/v=q0*n*v*S

 

Можно выразить скорость упорядоченного движения элек­тронов в проводнике, учитывая, что заряд электрона e=q0:

V=|I|/e*n*S

Обычно эта скорость мала. Под скоростью электрического тока понимают скорость распространения вдоль проводника электрического поля, под действием которого электроны (или другие носители тока) приходят в упорядоченное движение.

Для возникновения и существования тока в веществе необходи­мо наличие свободных носителей заряда и электрического поля, действующего на заряды с некоторой силой, под действием которой заряженные частицы приходят в упорядоченное движение.

    1.2. Электродвижущая сила (ЭДС). Напряжение.

Постоянный электрический ток в цепи вызывается стацио­нарным электростатическим полем (кулоновским полем), кото­рое должно поддерживаться источником тока, создающим посто­янную разность потенциалов на концах внешней цепи. Поскольку ток в проводнике несет определенную энергию, выде­ляющуюся, например, в виде некоторого количества теплоты, необходимо непрерывное превращение какой-либо энергии в электрическую. Иначе говоря, помимо кулоновских сил стацио­нарного электростатического поля на заряды должны действо­вать еще какие-то силы, неэлектростатической природы — сто­ронние силы.

Любые силы, действующие на электрически заряженные час­тицы, за исключением сил электростатического происхождения (т.е. кулоновских), называют сторонними силами.


     Природа (или происхождение) сторонних сил может быть раз­личной: например, в гальванических элементах и аккумулято­рах — это химические силы, в генераторах — это сила Лоренца или силы со стороны вихревого электрического поля.

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать