Модернизация системы охлаждения двигателя "Газели"

- среза:


МПа             (6.10)


где D=93 мм – диаметр цилиндра;

 hп=4 мм – толщина верхней кольцевой перемычки.

- изгиба:


МПа          (6.11)


- сложное:


 МПа            (6.12)


допускаемые напряжения sS (МПа) в верхних кольцевых перемычках с учетом значительных температурных нагрузок находятся в пределах:

для поршней из алюминиевых сплавов…………….…30-40.

Удельное давление поршня на стенку цилиндра:


 МПа                              (6.13)


 МПа                              (6.14)


где Nmax=0.0025 МН – наибольшая нормальная сила, действующая на стенку

цилиндра при работе двигателя на режиме максималь-

ной мощности.

Для современных автомобильных и тракторных двигателей q1 = 0.3 ¸ 1.0 и q2 = 0.2 ¸ 0.7 МПа.

Гарантированная подвижность поршня в цилиндре достигается за счет установления оптимальных диаметральных зазоров  между цилиндром и поршнем при различных тепловых нагрузках, возникающих в процессе работы дизеля. По статистическим данным для алюминиевых поршней с неразрезными юбками


∆r=(0.006 ¸ 0.008)D=0.007·93=0.651 мм                      (6.15)


∆ю = ( 0.001 ¸ 0.002 )D=0.002·93=0.186 мм                 (6.16)


Диаметры головки и юбки поршня:


мм                              (6.17)

мм                            (6.18)


Диаметральные зазоры в горячем состоянии:

                  (6.19)

мм


                    (6.20)

мм


где aц=11×10-6 1/К – коэффициент линейного расширения материала

цилиндра;

aп=22×10-6 1/К - коэффициент линейного расширения материала поршня;

Тц =383 К – температура стенок цилиндра;

Тr = 593 К – температура головки в рабочем состоянии;

Тю =413 К – температура юбки поршня в рабочем состоянии;

То =293 К – начальная температура цилиндра и поршня.


6.2 Расчет поршневого кольца


Поршневые кольца работают в условиях высоких температур и значительных переменных нагрузок, выполняя три основные функции:

– герметизации надпоршневого пространства в целях максимально возможного использования тепловой энергии топлива;

– отвода избыточной доли теплоты от поршня в стенки цилиндра;

– "управление маслом", т.е. рационального распределения масляного слоя по зеркалу цилиндра и ограничения попадания масла в камеру сгорания.

Материал кольца – серый чугун. Е=1.2·105 МПа.

Среднее давление кольца на стенку цилиндра:

                                 (6.21)

 МПа

где мм.

Давление кольца на стенку цилиндра в различных точках окружности при каплевидной форме эпюры давления:


, [МПа]                                                   (6.22)


Результаты расчета р, а также μк для различных углов ψ приведены ниже:


Угол ψ, определяющий положение текущего давления кольца, град

0

30

60

90

120

150

180

Коэффициент μк

1.05

1.05

1.14

0.90

0.45

0.67

2.85

Давление р в соответствующей точке, МПа

0.224

0.222

0.218

0.214

0.218

0.271

0.320


По этим данным построена каплевидная эпюра давлений кольца на стенку цилиндра (рис. 5.2).

Напряжение изгиба кольца в рабочем состоянии:


 МПа           (6.23)


Напряжение изгиба при надевании кольца на поршень:


МПа               (6.24)

Монтажный зазор в замке поршневого кольца:


                    (6.25)

мм


где  мм – минимально допустимый зазор в замке кольца во время работы двигателя;

 aк =11·10-6 1/К – коэффициент линейного расширения материала кольца;

 aц =11·10-6 1/К – коэффициент линейного расширения материала гильзы;

 Тк=493 К  – температура кольца в рабочем состоянии;

 Тц =383 К – температура стенок цилиндра;

 То= 293 К – начальная температура.

6.3 Расчет поршневого пальца


Во время работы двигателя поршневой палец подвергается воздействию переменных нагрузок, приводящих к возникновению напряжений изгиба, сдвига, смятия и овализации. В соответствии с указанными условиями работы к материалам, применяемым для изготовления пальцев, предъявляются требования высокой прочности и вязкости. Этим требованиям удовлетворяют цементированные малоуглеродистые и легированные стали

Для расчета принимаем следующие данные:

наружный диаметр пальца dn=25 мм,

внутренний диаметр пальца db=16 мм,

длину пальца ln=80 мм,

длину втулки шатуна =40 мм,

расстояние между торцами бобышек b=44 мм.

Материал поршневого пальца – сталь 15Х, Е=2·105 МПа.

Палец плавающего типа.

Расчет поршневого пальца включает определение удельных давлений пальца на втулку верхней головки шатуна и на бобышки, а также напряжений от изгиба, среза и овализации.

Максимальные напряжения возникают в пальцах дизелей при работе на номинальном режиме.

Расчетная сила, действующая на поршневой палец:

– газовая


МН               (6.26)

где рzmax=рz=6.356 МПа – максимальное давление газов на номинальном

   режиме;

 мм2 – площадь поршня;

– инерционная


МН  (6.27)


где рад/с

– расчетная


МН                  (6.28)


где k =0.82 – коэффициент, учитывающий массу поршневого пальца.

Удельное давление (МПа) пальца на втулку поршневой головки шатуна


МПа                              (6.29)


где  м – наружный диаметр пальца;

  м – длина опорной поверхности пальца в головки шатуна.

Удельное давление пальца на бобышки


 МПа                   (6.30)


Напряжение изгиба в среднем сечении пальца:


                                               (6.31)

 МПа


где a=dв/dп=0.64 – отношение внутреннего диаметра пальца к наружному.

Для автомобильных и тракторных двигателей [ sиз ] = 100 ¸ 250 МПа.

Касательные напряжения среза пальца в сечениях между бобышками и головкой шатуна:


                                         (6.32)

Мпа


Для автомобильных и тракторных двигателей [t] = 60 ¸ 250 МПа.

Максимальная овализация пальца (наибольшее увеличение горизонтального диаметра ∆ dnmax, мм) наблюдается в его средней, наиболее напряженной части:


                             (6.33)

мм


где Е = 2·105 МПа – модуль упругости материала пальца.

Напряжение овализации на внешней поверхности пальца:

- в горизонтальной плоскости (точки 1, ψ=0º):

             (6.34)

 МПа


-в вертикальной плоскости (точки 3, ψ=90º):


         (6.35)

МПа


Напряжение овализации на внутренней поверхности пальца:

- в горизонтальной плоскости (точки 2, ψ=0º):


                       (6.36)

МПа;


-в вертикальной плоскости (точки 4, ψ=90º):


                   (6.37)

 МПа.


7. КОНСТРУКТОРСКИЙ РАЗДЕЛ

Конструкторский раздел предназначен для рассмотрения основной задачи данной работы — усовершенствования системы охлаждения двигателя ЗМЗ 406 применяемого на автомобилях ГАЗ 2705, 3221 «ГАЗЕЛЬ» и их модификациях. При этом изменения в двигателе принятые в  тепловом расчете, т.е. форсирование двигателя для повышения его тяговых и скоростных характеристик приняты как перспективные и представляющие интерес с практической, а в данном случае еще и с теоретической  точки зрения. Принимая данные, полученные в тепловом расчете, и учитывая ,что после форсирования двигателя увеличилась мощность нетто, а следовательно тепловой режим стал более напряженным был проведен расчет системы охлаждения.

7.1 Расчет жидкостной системы охлаждения


Модернизируя систему охлаждения двигателя внутреннего сгорания проведем предварительный её расчет согласно материалу, изложенному в      [4]. Однако данный расчет является проверочным и ведётся в первом приближении с тем, чтобы сохранить геометрические, тепловые и иные  параметры основных деталей системы охлаждения максимально унифицируя её с существующей конструкцией в случае доработки. При расчете системы охлаждения двигателя исходной величиной является количество отводимого от него в единицу времени тепла Qω (ккал/ч). Это количество может быть определено из уравнения теплового баланса, или (ориентировочно) на основании экспериментальных данных. В данной работе используем второй вариант, на основании экспериментальных данных, выбирая коэффициенты и эмпирические данные предполагая наиболее напряженный тепловой режим работы.

В качестве циркулирующей охлаждающей жидкости принимаем этиленгликолевую незамерзающую смесь (антифриз).

 Таким образом, количество тепла отводимого от двигателя в единицу времени:


Qω=qωNeN=860∙85,0232∙1,36=99443,135 ккал/ч,                   (7.1)


где  qω=860 ккал/(л.с.∙ч)— количество отводимого от двигателя тепла,

                    для карбюраторных ДВС  обычно qω=830…860 ккал/(л.с.∙ч);

        NeN=85,0232 кВт— наибольшая мощность двигателя.

Находим количество жидкости (кгс/ч), циркулирующей в системе охлаждения в единицу времени,


 кгс/ч                (7.2)


где сω=0,5 ккал/(кгс∙°С)— теплоемкость циркулирующей жидкости;

      =5 °C— разность температур входящей в радиатор и

                                выходящей из него жидкости.


7.2 Расчет радиатора


 Величину поверхности охлаждения радиатора в первом приближении (м2) с достаточной точностью определим по простейшей формуле и сравним с существующей (FД=20 м2):

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать